Chapitre 22 : Matrices et applications linéaires

Table des matières

1	Mat	trices de familles de vecteurs et d'applications linéaires	
	1.1	Matrices d'une famille de vecteurs	
	1.2	Matrices d'une application linéaire	
	1.3	Coordonnées de l'image d'un vecteur par une application linéaire	
		Lien entre applications linéaires et matrices	
		Application linéaire canoniquement associée à une matrice	
2	Noyau, image et rang d'une matrice		
	2.1	Définition et premiers exemples	
		Retour sur les systèmes linéaires	
		Lien entre les diverses notions de rang	
3	Cha	angements de bases	
	3.1	Matrices de passage	
	3.2	Changements de bases et vecteurs	
	3.3	Changements de bases et applications linéaires	
	3.4	Matrices semblables	

Notation : \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Matrices de familles de vecteurs et d'applications linéaires

1.1 Matrices d'une famille de vecteurs

Définition 1.1 (matrice d'une famille de vecteurs dans une base)

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$, et soit $\mathscr{B} = (e_1, \dots, e_n)$ une base de E. On considère une famille finie (v_1, \dots, v_p) de vecteurs de E, avec $p \in \mathbb{N}^*$.

On appelle matrice de la famille (v_1, \ldots, v_p) dans la base \mathscr{B} , notée $\mathrm{Mat}_{\mathscr{B}}(v_1, \ldots, v_p)$, la matrice de $\mathscr{M}_{n,p}(\mathbb{K})$ dont la j-ième colonne est constituée des coordonnées du vecteur v_j dans la base \mathscr{B} . Autrement dit, il s'agit de la matrice $\mathrm{Mat}_{\mathscr{B}}(v_1, \ldots, v_p) = (a_{i,j}) \in \mathscr{M}_{n,p}(\mathbb{K})$ dont les coefficients sont

tels que pour tout $j \in [1; p], v_j = \sum_{i=1}^n a_{i,j} e_i$.

$$\begin{bmatrix} 1 ; p \end{bmatrix}, v_j = \sum_{i=1}^{n} a_{i,j} e_i. \\
 e_1 & v_1 & \cdots & v_j & \cdots & v_p \\
 e_2 & a_{1,j} & \cdots & a_{1,j} & \cdots & a_{1,p} \\
 e_2 & a_{2,1} & \cdots & a_{1,j} & \cdots & a_{2,p} \\
 \vdots & \cdots & \vdots & \cdots & \vdots \\
 a_{i,1} & \cdots & a_{i,j} & \cdots & a_{i,p} \\
 \vdots & \cdots & \vdots & \cdots & \vdots \\
 a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,p}
 \end{bmatrix}$$

Exemple 1.2 : Soit $E = \mathbb{R}_3[X]$, on note $\mathscr{B} = (1, X, X^2, X^3)$ la base canonique de E. Déterminer $\operatorname{Mat}_{\mathscr{B}}(X^3 + 2, X^2 + X, 5X^2)$.

Cas particulier (matrice d'un vecteur) : La matrice $\operatorname{Mat}_{\mathscr{B}}(v)$ d'un vecteur $v \in E$ dans la base \mathscr{B} est le vecteur colonne constitué des coordonnées de v dans la base \mathscr{B} .

1.2 Matrices d'une application linéaire

Définition 1.3 (matrice d'une application linéaire dans des bases)

Soient E et F des \mathbb{K} -espaces vectoriels de dimensions finies p et $n \in \mathbb{N}^*$, et soient $\mathscr{B} = (e_1, \dots, e_p)$ une base de E et $\mathscr{B}' = (e'_1, \dots, e'_n)$ une base de F.

On considère une application linéaire $f \in \mathcal{L}(E,F)$.

On appelle matrice de f dans les bases \mathscr{B} et \mathscr{B}' , notée $\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$, la matrice de la famille $f(\mathscr{B}) \stackrel{=}{\underset{\operatorname{def}}{=}} (f(e_1), \cdots, f(e_p))$ dans la base \mathscr{B}' :

$$\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) = \operatorname{Mat}_{\mathscr{B}'}(f(\mathscr{B})) \in \mathscr{M}_{n,p}(\mathbb{K}).$$

Autrement dit, il s'agit de la matrice $\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) = (a_{i,j}) \in \mathscr{M}_{n,p}(\mathbb{K})$ dont les coefficients sont tels que

pour tout
$$j \in [1; p], f(e_j) = \sum_{i=1}^{n} a_{i,j} e'_i.$$

$$\begin{aligned}
f(e_1) & \dots & f(e_p) & \dots & f(e_p) \\
e'_1 & e'_2 & \begin{pmatrix} a_{1,1} & \dots & a_{1,j} & \dots & a_{1,p} \\ a_{2,1} & \dots & a_{1,j} & \dots & a_{2,p} \\ \vdots & \dots & \vdots & \dots & \vdots \\ a_{i,1} & \dots & a_{i,j} & \dots & a_{i,p} \\ \vdots & \dots & \vdots & \dots & \vdots \\ a_{n,1} & \dots & a_{n,j} & \dots & a_{n,p} \end{pmatrix}$$

Exemple 1.4 : Soit f l'application linéaire suivante $f: \left\{ \begin{array}{l} \mathbb{R}_3[X] \to \mathbb{R}_2[X] \\ P \mapsto P' \end{array} \right.$ Exprimer la matrice de f dans les bases canoniques de $\mathbb{R}_3[X]$ et de $\mathbb{R}_2[X]$.

Cas particulier des endomorphismes :

Pour la matrice d'un endomorphisme $f \in \mathcal{L}(E)$ dans des bases \mathscr{B} et \mathscr{B}' , on prend souvent $\mathscr{B} = \mathscr{B}'$. On note alors plus simplement $\mathrm{Mat}_{\mathscr{B}}(f) = \mathrm{Mat}_{\mathscr{B},\mathscr{B}}(f) \in \mathscr{M}_n(\mathbb{K})$, appelée matrice de f dans la base \mathscr{B} .

Exemple 1.5 : Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$, soit $\mathscr{B} = (e_1, \dots, e_n)$ une base de E et soit h_{λ} l'homothétie de rapport $\lambda \in \mathbb{K}$. Déterminer $\operatorname{Mat}_{\mathscr{B}}(h_{\lambda})$. $Rappel : h_{\lambda} = \lambda \operatorname{id}_{E}$.

Proposition 1.6 (matrices de projections et de symétries)

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et soient F et G des sous-espaces vectoriels supplémentaires de E. On note p la projection sur F parallèlement à G et s la symétrie par rapport à F parallèlement à G.

Alors pour toute base \mathcal{B} de E adaptée à la décomposition $F \oplus G$,

$$\operatorname{Mat}_{\mathscr{B}}(p) = \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} \qquad \text{et} \qquad \operatorname{Mat}_{\mathscr{B}}(s) = \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & -I_{n-r} \end{pmatrix} \text{ où } r = \dim(F).$$

1.3 Coordonnées de l'image d'un vecteur par une application linéaire

Proposition 1.7 (coordonnées de l'image d'un vecteur par une application linéaire)

Soient E et F des \mathbb{K} -espaces vectoriels de dimensions finies non nulles, soient \mathscr{B} une base de E et \mathscr{B}' une base de F. On considère une application linéaire $f \in \mathscr{L}(E,F)$ et un vecteur v de E. Alors

$$\operatorname{Mat}_{\mathscr{B}'}(f(v)) = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)\operatorname{Mat}_{\mathscr{B}}(v).$$

Remarque : Plus généralement, $\operatorname{Mat}_{\mathscr{B}'}(f(v_1),\ldots,f(v_p)) = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)\operatorname{Mat}_{\mathscr{B}}(v_1,\ldots,v_p)$ où $v_1,\ldots,v_p \in E$.

Exemple 1.8 : Soit f l'application linéaire suivante $f: \left\{ \begin{array}{l} \mathbb{R}_2[X] \to \mathbb{R}_1[X] \\ P \mapsto P(X+1) - P(X) \end{array} \right.$ Déterminer les coordonnées du vecteur $f((X+1)^2)$ dans la base canonique de $\mathbb{R}_1[X]$.

1.4 Lien entre applications linéaires et matrices

Théorème 1.9 (isomorphisme $f \mapsto \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$)

Soient E et F des \mathbb{K} -espaces vectoriels de dimensions finies p et $n \in \mathbb{N}^*$, et soient \mathscr{B} une base de E et \mathscr{B}' une base de F.

L'application suivante est un isomorphisme de \mathbb{K} -espaces vectoriels :

$$\mathcal{L}(E,F) \longrightarrow \mathcal{M}_{n,p}(\mathbb{K})
f \longmapsto \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$$

Cas particulier des endomorphismes : On a alors un isomorphisme de K-espaces vectoriels :

$$\begin{array}{ccc} \mathscr{L}(E) & \longrightarrow & \mathscr{M}_n(\mathbb{K}) \\ f & \longmapsto & \operatorname{Mat}_{\mathscr{B}}(f) \end{array}$$

Théorème 1.10 (matrice d'une composée d'applications linéaires)

Soient E, F et G des \mathbb{K} -espaces vectoriels de dimensions finies non nulles, soient \mathscr{B} une base de E, \mathscr{B}' une base de F et \mathscr{B}'' une base de G, et soient des applications linéaires $f \in \mathscr{L}(E,F)$ et $g \in \mathscr{L}(F,G)$. Alors :

$$\operatorname{Mat}_{\mathscr{B},\mathscr{B}''}(g \circ f) = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}''}(g) \times \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f).$$

Cas particulier des endomorphismes : Soient f et $g \in \mathcal{L}(E)$. On a la relation :

$$\operatorname{Mat}_{\mathscr{B}}(f \circ g) = \operatorname{Mat}_{\mathscr{B}}(f) \times \operatorname{Mat}_{\mathscr{B}}(g).$$

Corollaire 1.11 (lien entre l'inverse d'une matrice et la réciproque d'un isomorphisme)

Soient E et F des \mathbb{K} -espaces vectoriels de dimensions finies non nulles, soient \mathscr{B} une base de E et \mathscr{B}' une base de F, et soit une application linéaire $f \in \mathscr{L}(E,F)$.

L'application f est un isomorphisme si et seulement si la matrice $\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$ est une matrice carrée inversible, et dans ce cas, on a la relation :

$$(\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f))^{-1} = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(f^{-1}).$$

Exemple 1.12 : Montrer que $f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}_2[X] \\ (a,b,c) & \mapsto & (a+c)+(2b+c)X+(a+b)X^2 \end{array} \right.$ est un isomorphisme et déterminer f^{-1} .

Cas particulier des endomorphismes : Soit $f \in \mathcal{L}(E)$.

L'endomorphisme f est un automorphisme si et seulement si la matrice carrée $\mathrm{Mat}_{\mathscr{B}}(f)$ est inversible. Dans ce cas, on a la relation :

$$(\operatorname{Mat}_{\mathscr{B}}(f))^{-1} = \operatorname{Mat}_{\mathscr{B}}(f^{-1}).$$

1.5 Application linéaire canoniquement associée à une matrice

Définition 1.13 (application linéaire canoniquement associée à une matrice)

Soient n et $p \in \mathbb{N}^*$, et soit $A \in \mathscr{M}_{n,p}(\mathbb{K})$.

Notons \mathscr{B}_p et \mathscr{B}_n les bases canoniques respectives de \mathbb{K}^p et \mathbb{K}^n .

L'unique application linéaire f de \mathbb{K}^p dans \mathbb{K}^n telle que $\mathrm{Mat}_{\mathscr{B}_p,\mathscr{B}_n}(f)=A$ est appelée <u>application</u> linéaire canoniquement associée à la matrice A.

On la note f_A .

Remarque : L'existence et l'unicité découlent de l'isomorphisme $f \mapsto \operatorname{Mat}_{\mathscr{B}_p,\mathscr{B}_n}(f)$ entre $\mathscr{L}(\mathbb{K}^p,\mathbb{K}^n)$ et $\mathscr{M}_{n,p}(\mathbb{K})$ vu dans le théorème 1.9.

Exemple 1.14: Déterminer l'application linéaire canoniquement associée à $\begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$.

Remarques:

- 1. L'application linéaire canoniquement associée à la matrice nulle $0_{\mathcal{M}_{n,p}(\mathbb{K})}$ est l'application nulle $0_{\mathcal{L}(\mathbb{K}^p,\mathbb{K}^n)}$.
- 2. L'application linéaire canoniquement associée à $I_n \in \mathcal{M}_n(\mathbb{K})$ est l'application identité $\mathrm{id}_{\mathbb{K}^n}$.
- 3. Si A est une matrice ligne, i.e. si $A \in \mathcal{M}_{1,p}(\mathbb{K})$, alors l'application linéaire canoniquement associée à A est une forme linéaire.
- 4. L'application f_A est un automorphisme si et seulement si A est une matrice carré inversible.

Proposition 1.15 (retour sur la condition suffisante d'inversibilité via l'inversibilité à gauche/droite)

Soit $n \in \mathbb{N}^*$, et soit $A \in \mathscr{M}_n(\mathbb{K})$.

On suppose qu'il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que $AB = I_n$ (A est inversible à droite) ou $BA = I_n$ (A est inversible à gauche).

Alors la matrice A est inversible, et $B = A^{-1}$.

2 Noyau, image et rang d'une matrice

2.1 Définition et premiers exemples

Définition 2.1 (noyau, image et rang d'une matrice)

Soient n et $p \in \mathbb{N}^*$, et soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

• Le noyau de A, noté $\operatorname{Ker}(A)$, est le noyau de l'application linéaire $X\mapsto AX$ i.e.

$$Ker(A) = \{ X \in \mathscr{M}_{p,1}(\mathbb{K}), AX = 0_{\mathscr{M}_{n,1}(\mathbb{K})} \}$$

Il s'agit donc d'un sous-espace vectoriel de $\mathcal{M}_{p,1}(\mathbb{K})$.

• L'image de A, notée $\mathrm{Im}(A)$, est l'image de l'application linéaire $X\mapsto AX$ i.e.

$$\operatorname{Im}(A) = \{ Y \in \mathcal{M}_{n,1}(\mathbb{K}), \exists X \in \mathcal{M}_{p,1}(\mathbb{K}), Y = AX \}$$

Il s'agit donc d'un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{K})$.

• Le rang de A, noté rg(A) est la dimension de Im(A), i.e. rg(A) = dim(Im(A)).

Remarque : En notant $f_A: \mathbb{K}^p \to \mathbb{K}^n$ l'application linéaire canoniquement associée à A, on a :

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \operatorname{Ker}(A) \iff (x_1, \dots, x_p) \in \operatorname{Ker}(f_A) \quad \text{et} \quad \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \operatorname{Im}(A) \iff (y_1, \dots, y_n) \in \operatorname{Im}(f_A)$$

On passe des vecteurs de \mathbb{K}^p ou \mathbb{K}^n aux matrices colonnes et réciproquement.

Proposition 2.2 (description du noyau et de l'image d'une matrice)

Soient n et $p \in \mathbb{N}^*$, et soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

• Le noyau de A est l'ensemble des solutions du système linéaire homogène $AX=0_{\mathcal{M}_{p,1}(\mathbb{K})}$, d'inconnue $X\in\mathcal{M}_{p,1}(\mathbb{K})$.

Dans un tel système, chaque équation correspond à une ligne de la matrice A.

• On note C_1, \ldots, C_p les colonnes de la matrice A (vecteurs de $\mathcal{M}_{n,1}(\mathbb{K})$). Alors $\text{Im}(A) = \text{Vect}(C_1, \ldots, C_p)$.

Exemple 2.3 : Calculer le noyau, l'image et le rang de $A = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$.

Théorème du rang pour les matrices : Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$, alors : $\dim(\operatorname{Ker}(A)) + \operatorname{rg}(A) = p$.

Proposition 2.4 (invariance du rang par produit de matrices inversibles)

Soient n et $p \in \mathbb{N}^*$, et soient $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $P \in GL_n(\mathbb{K})$ et $Q \in GL_p(\mathbb{K})$. Alors Ker(PA) = Ker(A) et Im(AQ) = Im(A). En particulier, rg(PAQ) = rg(A). Conséquence : Les opérations élémentaires sur les colonnes (resp. lignes) conservent l'image (resp. le noyau). Le rang d'une matrice est invariant par opérations élémentaires sur les lignes et les colonnes.

Exemple 2.5 : Déterminer le rang de
$$A = \begin{pmatrix} 0 & 1 & 1 & 5 \\ -1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 5 \end{pmatrix}$$
.

Proposition 2.6 (invariance du rang par transposition)

Soient n et $p \in \mathbb{N}^*$, et soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. On a l'égalité : $\operatorname{rg}(A) = \operatorname{rg}(A^T)$.

Conséquence : Le rang d'une matrice A est aussi égal au rang de la famille des vecteurs correspondant aux lignes de A.

Exemple 2.7 : On considère la matrice A de l'exemple précédent. Calculer à nouveau son rang.

${\bf Proposition~2.8~(caract\'erisation~de~l'inversibilit\'e~\`a~l'aide~du~noyau~ou~de~l'image)}$

Soit $n \in \mathbb{N}^*$, et soit $A \in \mathcal{M}_n(\mathbb{K})$.

Les propriétés suivantes sont équivalentes :

- A est inversible; $\operatorname{Ker}(A) = \{0_{\mathcal{M}_{n,1}(\mathbb{K})}\};$ $\operatorname{Im}(A) = \mathcal{M}_{n,1}(\mathbb{K});$ $\operatorname{rg}(A) = n.$
- **Exemple 2.9 :** La matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ est-elle inversible?

Proposition 2.10 (retour sur l'inversibilité d'une matrice triangulaire supérieure)

Soit $n \in \mathbb{N}^*$, et soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure.

La matrice A est inversible si et seulement si tous ses coefficients diagonaux sont non nuls.

Lorsque c'est le cas, la matrice inverse A^{-1} est elle aussi triangulaire supérieure, et ses coefficients diagonaux sont les inverses des coefficients diagonaux de A.

2.2 Retour sur les systèmes linéaires

Proposition 2.11 (ensemble des solutions d'un système linéaire)

Soient n et $p \in \mathbb{N}^*$. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{n,1}(\mathbb{K})$.

On considère le système linéaire d'écriture matricielle (S): AX = B.

Deux cas peuvent se produire:

- 1. Le système (S) est <u>compatible</u>, c'est-à-dire que (S) possède au moins une solution X_0 . Dans ce cas, l'ensemble des solutions de (S) est $X_0 + \text{Ker}(A)$.
- 2. Le système (S) est incompatible, c'est-à-dire qu'il n'a pas de solution.

Remarques:

- 1. On dit que le système homogène $(S_H): AX = 0$ est de rang rg(A). L'ensemble des solutions de (S_H) est un sous-espace vectoriel de $\mathscr{M}_{p,1}(\mathbb{K})$ de dimension p - rg(A).
- 2. Le système AX = B est compatible si et seulement si $B \in Im(A)$.

Exemple 2.12 : Résoudre le système d'inconnues réelles
$$\begin{cases} x_1 + x_3 + 5x_4 &= 7 \\ 2x_1 + x_2 + 3x_3 + 6x_4 &= 4 \\ 3x_1 + 4x_2 + 7x_3 &= -18 \end{cases}.$$

2.3 Lien entre les diverses notions de rang

Proposition 2.13 (lien avec le rang d'une famille)

Soit (v_1, \ldots, v_p) une famille (non vide) d'un espace vectoriel E de dimension finie $n \in \mathbb{N}^*$.

Soit \mathcal{B} une base de E.

Alors $\operatorname{rg}(v_1,\ldots,v_p) = \operatorname{rg}(\operatorname{Mat}_{\mathscr{B}}(v_1,\ldots,v_p)).$

Conséquence : La famille (v_1, \ldots, v_p) est génératrice de E si et seulement si $\operatorname{rg}(\operatorname{Mat}_{\mathscr{B}}(v_1, \ldots, v_p)) = n$.

Exemple 2.14 : Montrer que $(X^2 + X + 1, X^2 + 2X + 3, X^2 + 4X + 5)$ est une base de $\mathbb{R}_2[X]$.

Proposition 2.15 (Lien avec le rang d'une application linéaire)

Soit $f \in \mathcal{L}(E,F)$ avec E et F des \mathbb{K} -espaces vectoriels de dimensions finies p et $n \in \mathbb{N}^*$.

Soient \mathscr{B} une base de E et \mathscr{B}' une base de F.

Alors $\operatorname{rg}(f) = \operatorname{rg}(\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)).$

Conséquence : L'application linéaire f est surjective si et seulement si $\operatorname{rg}(\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)) = n$.

Exemple 2.16 : Soit f l'application linéaire suivante $f: \left\{ \begin{array}{l} \mathbb{R}_2[X] \to \mathbb{R}_4[X] \\ P \mapsto P(X^2+1) \end{array} \right.$ Déterminer $\operatorname{rg}(f)$.

3 Changements de bases

3.1 Matrices de passage

Définition 3.1 (matrice de passage entre deux bases)

Soit E un \mathbb{K} -espace vectoriel de dimension finie non nulle, et soient \mathscr{B} et \mathscr{B}' deux bases de E. On appelle matrice de passsage de \mathscr{B} à \mathscr{B}' , notée $P_{\mathscr{B}}^{\mathscr{B}'}$, la matrice de la famille \mathscr{B}' dans la base \mathscr{B} :

$$P_{\mathscr{B}}^{\mathscr{B}'} = \operatorname{Mat}_{\mathscr{B}}(\mathscr{B}')$$

Il s'agit d'une matrice carrée, de taille $\dim(E)$.

Remarque : Avec les mêmes notations, $P_{\mathscr{B}}^{\mathscr{B}'}=\mathrm{Mat}_{\mathscr{B}',\mathscr{B}}(\mathrm{id}_E).$

Exemple 3.2: Notons $\mathscr{B} = (1, X, X^2)$ et $\mathscr{B}' = (1, X - 1, (X - 1)^2)$ deux bases de $\mathbb{R}_2[X]$. Déterminer $P_{\mathscr{B}}^{\mathscr{B}'}$.

Proposition 3.3 (inversibilité et inverse d'une matrice de passage)

Soit E un \mathbb{K} -espace vectoriel de dimension finie non nulle, et soient \mathscr{B} et \mathscr{B}' deux bases de E. La matrice $P_{\mathscr{B}'}^{\mathscr{B}'}$ est inversible, d'inverse $P_{\mathscr{B}'}^{\mathscr{B}}: (P_{\mathscr{B}'}^{\mathscr{B}'})^{-1} = P_{\mathscr{B}'}^{\mathscr{B}}$

Exemple 3.4 : Notons $\mathscr{B} = (1, X, X^2)$ et $\mathscr{B}' = (1, X - 1, (X - 1)^2)$ deux bases de $\mathbb{R}_2[X]$. Déterminer $P_{\mathscr{B}'}^{\mathscr{B}}$.

3.2 Changements de bases et vecteurs

Théorème 3.5 (effet d'un changement de base sur les coordonnées d'un vecteur)

Soit E un \mathbb{K} -espace vectoriel de dimension finie non nulle, soient \mathscr{B} et \mathscr{B}' deux bases de E, et soit v un vecteur de E.

On a la relation : $\operatorname{Mat}_{\mathscr{B}}(v) = P_{\mathscr{B}}^{\mathscr{B}'} \operatorname{Mat}_{\mathscr{B}'}(v)$.

Exemple 3.6 : Déterminer les coordonnées de $X^2 + X + 1$ dans la base $\mathscr{B}' = (1, X - 1, (X - 1)^2)$.

Conséquence : Avec les mêmes notations, si (v_1, \cdots, v_p) est une famille de vecteurs de E, on a :

$$\operatorname{Mat}_{\mathscr{B}}(v_1, \dots, v_p) = P_{\mathscr{B}}^{\mathscr{B}'} \operatorname{Mat}_{\mathscr{B}'}(v_1, \dots, v_p)$$

3.3 Changements de bases et applications linéaires

Théorème 3.7 (effet d'un changement de base sur la matrice d'une application linéaire)

Soient E et F des \mathbb{K} -espaces vectoriels de dimensions finies non nulles, soient \mathscr{B} et \mathscr{B}' deux bases de E, soient \mathscr{C} et \mathscr{C}' deux bases de F, et soit une application linéaire $f \in \mathscr{L}(E,F)$. On a la relation :

$$\operatorname{Mat}_{\mathscr{B}',\mathscr{C}'}(f) = P_{\mathscr{C}'}^{\mathscr{C}} \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(f) P_{\mathscr{B}}^{\mathscr{B}'}$$

Théorème 3.8 (effet d'un changement de base sur la matrice d'un endomorphisme)

Soit E un \mathbb{K} -espace vectoriel de dimension finie non nulle, soient \mathscr{B} et \mathscr{B}' deux bases de E, et soit un endomorphisme $f \in \mathscr{L}(E)$. On a la relation :

$$\operatorname{Mat}_{\mathscr{Z}'}(f) = (P_{\mathscr{B}}^{\mathscr{B}'})^{-1} \operatorname{Mat}_{\mathscr{B}}(f) P_{\mathscr{B}}^{\mathscr{B}'}.$$

Méthode : Diagonalisation. Afin de déterminer les itérés d'un endomorphisme f, il faut calculer les puissances de $\operatorname{Mat}_{\mathscr{B}}(f)$ où \mathscr{B} est la base canonique (ce qui n'est pas toujours facile). Néanmoins, si on nous donne une base \mathscr{B}' dans laquelle $\operatorname{Mat}_{\mathscr{B}'}(f)$ est diagonale, alors $\operatorname{Mat}_{\mathscr{B}'}(f)^n$ se calcule aisément, ce qui permet de déterminer $\operatorname{Mat}_{\mathscr{B}}(f^n)$ via la formule suivante $\operatorname{Mat}_{\mathscr{B}}(f^n) = P_{\mathscr{B}}^{\mathscr{B}'} \operatorname{Mat}_{\mathscr{B}'}(f^n) P_{\mathscr{B}'}^{\mathscr{B}} = P_{\mathscr{B}}^{\mathscr{B}'} \operatorname{Mat}_{\mathscr{B}'}(f)^n (P_{\mathscr{B}}^{\mathscr{B}'})^{-1}$.

Exemple 3.9 : Soit f l'endomorphisme de \mathbb{R}^2 suivant $f:(x,y)\mapsto (-4x+2y,3x+y)$. Déterminer f^n pour tout $n\in\mathbb{N}$.

Notons $\mathscr{B}=(e_1,e_2)$ la base canonique de \mathbb{R}^2 . On pourra considérer les deux vecteurs suivants : $e_1'=e_1+3e_2$ et $e_2'=-2e_1+e_2$ qui forment une base de \mathbb{R}^2 que l'on notera \mathscr{B}' .

3.4 Matrices semblables

Définition 3.10 (matrices semblables)

Soit $n \in \mathbb{N}^*$, et soient A et $A' \in \mathcal{M}_n(\mathbb{K})$.

On dit que les matrices A et A' sont <u>semblables</u> s'il existe une matrice inversible $P \in GL_n(\mathbb{K})$ telle que

$$A' = P^{-1}AP.$$

Remarque: En particulier, les matrices d'un même endomorphisme dans deux bases différentes sont semblables.

Méthode: Il n'est pas toujours facile de déterminer les puissances d'une matrice carré A. Néanmoins, si on nous donne une matrice diagonale A' semblable à A i.e. $A' = P^{-1}AP$ où P est une matrice inversible, alors les puissances de A peuvent se calculer via l'égalité suivante : $A^n = PA'^nP^{-1}$.

Exemple 3.11: Soit $B = \begin{pmatrix} 13 & -16 \\ 9 & -11 \end{pmatrix}$. Calculer B^n pour tout $n \in \mathbb{N}$.

On pourra montrer que B est semblable à $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ en introduisant $P = \begin{pmatrix} -5 & 7 \\ 3 & -4 \end{pmatrix}$.